
Solution Brief
 User-Space Network I/O : Taking Data Path on Hyper-drive

 Scalable network performance in a virtualized environment

Next generation networks are characterized by a much higher native flexibility and programmability for all non -

radio network segments including SDN, NFV and IoT Networks. Multicore processing and virtualization are rapidly

becoming ubiquitous in software development.

BENEFITS (MontaVista Dataplane Profile) APPLICATIONS / USE CASES

 OUT OF BOX EXPERINECE WITH PRE-TESTED BSPs

 REAL TIME LINUX + Virtualization (KVM + Containers)

 Multi-Architecture & HW/FPGA Optimization

 BUILT IN FLEXIBILITY, RELIABILITY AND SECURITY

 SECURE LIVE KERNEL AND APPLICATION UPDATE

 5G CARRIER GRADE INFRASTRUCTURE

 DELIVER NFV & SDN WITH SERVICE CHAINING

 TELCO CLOUD & vROUTER

MontaVista continues to participate in the way networks are created and behave by providing necessary soft-

ware, tools and support to help reduce Capex and improve Opex. This is being achieved by transitioning from

Physical Network Function (PNF) (i.e. on a single purpose hardware & software platform) to a Virtual Network

Function (VNF) that is deployable on a wide variety of general purpose hardware and software combination.

An additional requirement for the success of this flexible and scalable solution is to speed up network I/O perfor-

mance.

Fig 1: Virtualization & Fast Path Solution with MontaVista™ CGX

Data Plane Development Kit (DPDK)

 Software based accelerated packet processing

 Contains libraries and drivers for select NICs

Open Virtual Switch (OVS)

 Enables network automation with programmability

 Used in virtualized server, SDN & NFV use-cases

Solution Brief

Next Generation Networks

Network data centers are undergoing major transfor-

mations by introducing virtual network devices to pro-

vide the agility and efficiency required today. Until re-

cently, deployment of new services was done with pur-

pose built telecommunications equipment. However,

telecommunication service provides are demanding for

higher agility with better costs to keep up with the rapid

expansion in the user base, the increasing services offer-

ings along with the rate technology innovation.

Multicore processing and virtualization are rapidly be-

coming ubiquitous in software development. They are

widely used in the commercial world, to

 Reduce CAPEX by Isolating application software

from hardware and operating systems, enabling dif-

ferent applications to share underutilized computers

or processors.

 Improve OPEX through system scalability at a frac-

tion of time and cost along with high reliability and

robustness by limiting fault and failure propagation

and support failover and recovery.

Fig 2: Virtualization solution options with MontaVista™ CGX

Network Performance (Throughput)

Network performance can be best understood in terms

of cost per packet i.e. both CAPEX & OPEX needed to

deliver packet to its destination. The promises of cost

reductions from virtualizing a network can only be real-

ized if packet throughput and I/O response times can

be achieved and predicted. Linear scalability in perfor-

mance by the CPU core in a virtualization server envi-

ronment can be unpredictable. This is because generic

Operating systems are not optimized for networking in a

virtual environment.

However, it is possible to deliver hardware line rates in a

virtualized environment through the use of certain archi-

tectures and development kits like the Data Plane De-

velopment Kit (DPDK) and Open Data Plane (ODP).

 MontaVista is able to provide the optimized architec-

ture used to run a high performance, optimized prod-

uct. There is an increasing trend to use such user space

access to network I/O in host and guest, as a popular

way to work-around the native performance challeng-

es of the OS networking stack.

Solution Brief

Let’s explore some of these methods,

Packet Processing in Standard Linux

Linux Kernel data path is designed as an internet host

that receives direct access to hardware drivers. Howev-

er, it is very generic and not optimized for forwarding

use case. Here is a quick flow for ease of understanding

 Packet arrives on the NIC RX queue.

 DMA copies the packet to a DMA-able memory

without CPU intervention

 At this point an interrupt is generated to notify the

system that a packet needs to be processed

 Now the driver copies the packet from DMA-able

region to the kernel packet buffer

 Later the network stack takes care of passing the

received packet to the application via socket inter-

face which involves copying data from kernel

space to user space

Packet Processing Architecture

 Single threaded architecture (standard OS)

A standard networking stack uses services provided by

the Operating System (OS) running on a single proces-

sor (single threaded). This model adds overheads asso-

ciated with the performance of OS functions such as

Fig 3: Understanding Data-path & Performance techniques

preemptions, thread management, timers and locking.

 Multi-threaded architecture (multi-processing OS)

The protocol stack processing software supports multi-

ple processors (multi-threaded), either through the use

of Symmetrical Multiprocessing (SMP) platforms or multi-

core processor architecture. Performance increases are

realized for a small number of processors, but fails to

scale linearly over larger numbers of processors.

 Fast path architecture (OS by-pass)

In a fast path implementation, the data plane is split

into two layers. The lower layer, typically called the fast

path, processes the majority of incoming packets out-

side the OS environment and without incurring any of

the OS overheads that degrade overall performance.

Only those packets that require complex processing are

forwarded to the OS networking stack (the upper layer

of the data plane), which performs the necessary man-

agement, signaling and control functions.

Accelerated Packet Processing Approach

Special Hardware - Network processors (NPU), Multicore

processors with dedicated hardware accelerators for

packet processing like crypto-engines, pattern match-

ing engines, hardware queues for QoS, etc.

Software - specialized packet processing like DPDK.

Solution Brief
Data Plane Development Kit (DPDK)

DPDK is a set of libraries and drivers for fast packet pro-

cessing. It runs mostly in Linux userland. The main libraries

are:

 multicore framework

 huge page memory

 ring buffers

 poll-mode drivers for networking, crypto and

eventdev

DPDK utilizes the following techniques to achieve the

maximum throughput and minimal time for processing

packets

 DMA directly to user-space shared memory

 Polling instead of handling interrupts for each ar-

rived packet;

 SSE instruction set to copy big amount of data ef-

fectively;

 Hugepages to decrease the size of TLB that results in

a much faster virtual to physical page conversion;

 Thread affinity to bind threads to a specific core to

improve cache utilization;

 Lock-free user-space multi-core synchronization us-

ing rings;

 NUMA awareness to avoid expensive data transfers

between sockets;

Open Data Plane (ODP)

The ODP project has been established to produce an

open-source, cross-platform set of application program-

ming interfaces (APIs) for the networking data plane.

ODP consists of an API specification and a set of refer-

ence implementations that realize these APIs on differ-

ent platforms. Implementations range from pure soft-

ware to those that deeply exploit the various hardware

acceleration and offload features found on modern

networking system-on-Chip (SoC) processors. ODP’s

goal is to allow implementers of the API great flexibility

to exploit and optimize the implementation. This is in-

tended to enable easy platform portability such that an

application written to the API can pick up performance

(Source: http://www.openfastpath.org/index.php/service/technicaloverview/) Fig 4: OFP Arch. Overview

gains without needing significant platform knowledge

when ported. An ODP application runs as a Linux user

space process but makes very limited calls to Linux APIs.

Instead it uses ODP APIs (and possibly SDK APIs) to ena-

ble accelerated support of underlying hardware fea-

tures without incurring kernel overhead.

Open Fast Path (OFP)

OpenFastPath is an open source implementation of a

high performance TCP/IP stack that provides features

that network application developers need to cope with

today’s fast-paced network. OFP enables accelerated

routing/forwarding for IPv4 and IPv6, tunneling and ter-

mination for a variety of protocols. Unsupported func-

tionality is provided by the host OS networking stack or

slowpath.

FD.io (Fast data - Input/Output)

FD.io is a software-based packet processing technology

geared towards the creation of high-throughput, low-

latency and resource-efficient IO services suitable to

many architectures (x86, ARM, and PowerPC) and de-

ployment environments (bare metal, VM, container).

 Vector Packet Processing (VPP) library is highly mod-

ular, allowing for new graph nodes to be easily

“plugged in” without changes to the underlying

code base making it highly scalable solution.

 Along with VPP, FD-io leverages DPDK capabilities in

support of additional projects including NSH_ SFC,

Honeycomb, and ONE to accelerate the NFV data

planes.

Solution Brief
Software Fast Path in VM with DPDK : Packet Performance

Test setup to measure packet performance improvement

Fig 5: Case Study: Guest VM fast path packet performance

Measuring Packet Performance for Guest VM

The setup shown in Fig 5 shows a ThunderX NICVF PMD

(librte_pmd_thunderx_nicvf) provides poll mode driver

support for the inbuilt NIC found in the Cavium Thun-

derX SoC family as well as their virtual functions (VF) in

SR-IOV context.

 ThunderX NIC PF/VF kernel modules maps

each physical Ethernet port automatically to

virtual function (VF) and presented them as

PCIe-like SR-IOV device

Pass VF device to VM context (PCIe Passthrough):

 The VF devices may be passed through to the

guest VM using qemu or virt-manager or virsh

etc.

 Vhost is a kernel acceleration module for vir-

tio qemu backend

 The DPDK extends KNI to support vhost raw

socket interface, which enables vhost to di-

rectly read/ write packets from/to a physical port.

Performance Measurement

Launch the forwarding application using ports which

are binded. As Fig 9 shows we then use the flow—

packet generator->Guest VM DPDK port ->Guest VM

DPDK port->packet generator

Fig 6: Data path performance (Octeon TX 83xx)

2315 North First St, 4th FL

San Jose, CA 95131

Email: sales@mvista.com

Tel: +1-408-943-7451

MontaVista Software

© 2018 MontaVista Software, Inc. All rights reserved.

LiquidIO, LiquidSecurity, OCTEON Fusion-M, OCTEON TX, ThunderX, Xpliant are trademarks of Cavium, Inc. Linux is a registered trademark of Linus Torvalds. MontaVista is a registered trademark

of MontaVista Software, LLC. All other names mentioned are trademarks, registered trademarks or service marks of their respective companies. MVSB11

www.mvista.com

Solution Brief

MontaVista Carrier Grade eXpress (CGX), meets the demands of

the interconnected intelligent devices, providing application

portability, dynamic configuration, field maintenance, and real-

time performance in a single platform that is optimized for 5G,

NFV Applications and Internet of Things (IoT) Devices.

About MontaVista Software

MontaVista Software, LLC, a wholly owned subsidiary of Cavium Networks (NASDAQ:CAVM) is a leader in embedded Linux

commercialization. For over 15 years, MontaVista has been helping embedded developers get the most out of open source

by adding commercial quality, integration, hardware en­ablement, expert support, and the resources of the MontaVista

development community.

eXpress.Connected.Everything.

